Seaverns Web Development Coding Security Applications and Software Development Bex Severus Galleries Digital Art & Photography

BotNets Technology Hacking Automation Scripts

Part 1: BotNets – What Are They and What Is Their Purpose?

What Are Botnets?

A botnet is a network of compromised computers or devices, known as “bots” or “zombies,” which are controlled remotely by an attacker, often referred to as a “botmaster” or “bot herder.” These botnets can be used to perform a variety of malicious activities, typically without the knowledge of the device owners.

Evolution of Botnets

  1. Early Days:
    • IRC-Based Botnets (1990s): The earliest botnets used Internet Relay Chat (IRC) to command infected machines. These bots were often created for fun or minor pranks but set the stage for more serious threats.
    • Example: The “Sub 7” and “Back Orifice” trojans were among the first to create such networks.
  2. 2000s – Rise of Complexity:
    • Peer-to-Peer (P2P) Networks: Botnets evolved to use P2P networks to avoid centralized control and improve resilience.
    • Example: The “Storm Worm” utilized a P2P architecture to distribute commands.
  3. 2010s – Advanced Botnets:
    • Botnets as a Service: The commercialization of botnets turned them into a service for hire.
    • Example: The “Mirai” botnet, which primarily targeted IoT devices, became infamous for its scale and impact.
  4. 2020s – Sophisticated and Distributed Attacks:
    • Targeted Attacks and Cryptojacking: Modern botnets often focus on specific targets or exploit devices for cryptojacking.
    • Example: “Emotet” and “TrickBot” are known for their sophisticated modularity and targeted attacks.

Common Uses of Botnets

  1. Distributed Denial of Service (DDoS) Attacks:
    • Overwhelm a target server or network with traffic to make it inaccessible.
  2. Spam and Phishing:
    • Distribute large volumes of spam emails or phishing attempts to harvest personal information.
  3. Data Theft:
    • Steal sensitive information from compromised systems.
  4. Cryptojacking:
    • Utilize infected devices to mine cryptocurrency without the user’s consent.
  5. Click Fraud:
    • Automate clicks on online ads to generate fraudulent revenue.

Key Terminology

  • Botmaster/Bot Herder: The individual who controls the botnet.
  • Command and Control (C2): The server or infrastructure used to send commands to the bots.
  • Infection Vector: The method by which the botnet malware is spread (e.g., phishing, exploit kits).
  • Zombies/Bots: Infected devices within the botnet.

Popular Variants

  1. Mirai:
    • Known for its large-scale attacks using IoT devices.
    • Exploits default passwords on IoT devices.
  2. Emotet:
    • Initially a banking trojan, evolved into a modular botnet used for a variety of malicious activities.
    • Known for its resilience and ability to distribute other malware.
  3. Zeus/Zbot:
    • A banking trojan that evolved into a powerful botnet for stealing financial credentials.
  4. Conficker:
    • One of the largest and most infamous botnets, known for its ability to spread through vulnerabilities in Windows operating systems.

Part 2: A Basic Example of a Botnet

Overview

Let’s look at a simple Python script example to demonstrate the concept of a botnet. This example is for educational purposes only and should not be used for any malicious activities.

Basic Botnet Example in Python

# Example BotNet In Python:

import socket
import threading

# This is the bot (client) code.

def connect_to_server():
    server_ip = "127.0.0.1"  # IP of the command and control server (for demonstration)
    server_port = 12345      # Port of the command and control server

    s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    try:
        s.connect((server_ip, server_port))
        print("Connected to server")
        
        while True:
            command = s.recv(1024).decode('utf-8')
            if command == "shutdown":
                print("Shutting down...")
                break
            else:
                # Execute command
                print(f"Received command: {command}")
                # For security reasons, this part is left out in this example.
                # You could use os.system(command) to execute commands.
        
    except Exception as e:
        print(f"Error: {e}")
    finally:
        s.close()

def main():
    # Create multiple threads to simulate multiple bots
    for i in range(5):  # Simulating 5 bots
        t = threading.Thread(target=connect_to_server)
        t.start()

if __name__ == "__main__":
    main()

Explanation

  1. Socket Setup:
    • The socket library is used to create a network connection. The bot connects to a predefined IP address and port number of the command and control (C2) server.
  2. Connection Handling:
    • The connect_to_server() function establishes a connection to the C2 server and listens for commands.
  3. Command Execution:
    • The bot waits for commands from the C2 server. If it receives a command (e.g., “shutdown”), it performs the action. In a real-world scenario, commands could be anything, including executing system commands or sending data.
  4. Multithreading:
    • Multiple threads are created to simulate multiple bots connecting to the C2 server concurrently. Each thread represents an individual bot.
  5. Error Handling:
    • Basic error handling is in place to catch and display any exceptions that occur during the connection or execution process.

Note

This example demonstrates a simplified version of a botnet client. In real-world scenarios, botnets are more complex and include additional features such as encryption, obfuscation, and advanced command structures. This script is provided for educational purposes to understand the basic principles of how botnets operate.

Related Links:
Home Network Router Attacks
BotNet Archive – For Educational Purposes Only!

Cybercriminals Weaponizing Open-Source SSH-Snake Tool for Network Attacks

SSH-Snake, a self-modifying worm that leverages SSH credentials.

Original Article : The Hacker News

A recently open-sourced network mapping tool called SSH-Snake has been repurposed by threat actors to conduct malicious activities.

“SSH-Snake is a self-modifying worm that leverages SSH credentials discovered on a compromised system to start spreading itself throughout the network,” Sysdig researcher Miguel Hernández said.

“The worm automatically searches through known credential locations and shell history files to determine its next move.”

SSH-Snake was first released on GitHub in early January 2024, and is described by its developer as a “powerful tool” to carry out automatic network traversal using SSH private keys discovered on systems.

In doing so, it creates a comprehensive map of a network and its dependencies, helping determine the extent to which a network can be compromised using SSH and SSH private keys starting from a particular host. It also supports resolution of domains which have multiple IPv4 addresses.

“It’s completely self-replicating and self-propagating – and completely fileless,” according to the project’s description. “In many ways, SSH-Snake is actually a worm: It replicates itself and spreads itself from one system to another as far as it can.”

BotNet CNC Control Hacker Inflitration Exploits Vulnerabilities SSH TCP Bots Hardware Software Exploited

BotNet CNC Control Hacker Infiltrates & Exploits Vulnerabilities Vie SSH TCP Both Hardware Software Exploited

Sysdig said the shell script not only facilitates lateral movement, but also provides additional stealth and flexibility than other typical SSH worms.

The cloud security company said it observed threat actors deploying SSH-Snake in real-world attacks to harvest credentials, the IP addresses of the targets, and the bash command history following the discovery of a command-and-control (C2) server hosting the data.

How Does It Work?

These attacks involve active exploitation of known security vulnerabilities in Apache ActiveMQ and Atlassian Confluence instances in order to gain initial access and deploy SSH-Snake.
“The usage of SSH keys is a recommended practice that SSH-Snake tries to take advantage of in order to spread,” Hernández said. “It is smarter and more reliable which will allow threat actors to reach farther into a network once they gain a foothold.”

When reached for comment, Joshua Rogers, the developer of SSH-Snake, told The Hacker News that the tool offers legitimate system owners a way to identify weaknesses in their infrastructure before attackers do, urging companies to use SSH-Snake to “discover the attack paths that exist – and fix them.”

“It seems to be commonly believed that cyber terrorism ‘just happens’ all of a sudden to systems, which solely requires a reactive approach to security,” Rogers said. “Instead, in my experience, systems should be designed and maintained with comprehensive security measures.”

Netcat file transfer chat utility send receive files

Netcat file transfer chat utility. Easily Send & Receive Files Local & Remote.

“If a cyber terrorist is able to run SSH-Snake on your infrastructure and access thousands of servers, focus should be put on the people that are in charge of the infrastructure, with a goal of revitalizing the infrastructure such that the compromise of a single host can’t be replicated across thousands of others.”

Rogers also called attention to the “negligent operations” by companies that design and implement insecure infrastructure, which can be easily taken over by a simple shell script.

“If systems were designed and maintained in a sane manner and system owners/companies actually cared about security, the fallout from such a script being executed would be minimized – as well as if the actions taken by SSH-Snake were manually performed by an attacker,” Rogers added.

“Instead of reading privacy policies and performing data entry, security teams of companies worried about this type of script taking over their entire infrastructure should be performing total re-architecture of their systems by trained security specialists – not those that created the architecture in the first place.”

The disclosure comes as Aqua uncovered a new botnet campaign named Lucifer that exploits misconfigurations and existing flaws in Apache Hadoop and Apache Druid to corral them into a network for mining cryptocurrency and staging distributed denial-of-service (DDoS) attacks.

The hybrid cryptojacking malware was first documented by Palo Alto Networks Unit 42 in June 2020, calling attention to its ability to exploit known security flaws to compromise Windows endpoints.
As many as 3,000 distinct attacks aimed at the Apache big data stack have been detected over the past month, the cloud security firm said. This also comprises those that single out susceptible Apache Flink instances to deploy miners and rootkits.

“The attacker implements the attack by exploiting existing misconfigurations and vulnerabilities in those services,” security researcher Nitzan Yaakov said.

Apache Vulnerability Update Available!

Apache Vulnerability Update Available!

“Apache open-source solutions are widely used by many users and contributors. Attackers may view this extensive use as an opportunity to have inexhaustible resources for implementing their attacks on them.”