Web and Software Development

Mathematical Formula Plotter Tutorial

Mathematical Formula Plotter Tutorial

Created by K0NxT3D

Welcome to the Mathematical Formula Plotter Tutorial, where we will guide you through the process of creating a simple yet powerful visualizer using Python. This tool will help you visualize electromagnetic fields using a Rodin Coil design and generate detailed graphical outputs, making it a perfect learning project for beginner to intermediate Python Developers.

Key Features:

  • Python tkinter for building the graphical user interface (GUI)
  • numpy for numerical computations
  • matplotlib for plotting electromagnetic fields
  • Pillow for basic aesthetics and visual enhancement

Mathematical Formula Plotter Tutorial
Project Overview

This tutorial focuses on creating an interactive application that generates Electromagnetic Field visualizations based on a Rodin Coil design. The plotter demonstrates the relationship between key formulas such as magnetic field strength, inductance, and resonance frequency.

You will see how these fundamental concepts come together in a practical way, helping you grasp both theoretical and computational aspects of electromagnetism.


Getting Started

The GUI is designed to be simple and easy to configure, with just a few input fields. Once you enter values for parameters like number of turns, current, and radius, the application will generate both 2D and 3D plots.

We’ll walk you through the setup process, from installation to compiling your application, step-by-step.


Recommended Level

This tutorial is ideal for beginner to intermediate Python programmers. Some basic knowledge of Python and mathematical concepts like electromagnetic fields will be helpful, but it is not required.


Rodin Coils Explained

(More About Rodin Coils Here…)
A Rodin Coil is a type of electromagnetic coil that creates a unique toroidal magnetic field. This is useful in various applications like energy generation, wireless power transfer, and electromagnetic therapy. In this tutorial, we simulate the magnetic field and other properties of a Rodin Coil using mathematical formulas and Python programming.


Files Included

The project contains the following files:

Main Directory (/):

  • mfp (Executable): The compiled version of the application.
  • mfp.py (Python Source File): The main Python script with the core functionality.
  • README (This File): Documentation for setting up and using the project.
  • requirements.txt (Python Dependencies File): The list of required Python libraries for the project.

Backgrounds (/backgrounds):

  • background.png: A background image that should be in the same directory as the executable.

Python Requirements (requirements.txt)

To run the project, you will need to install the following Python libraries:

contourpy==1.1.1
cycler==0.12.1
fonttools==4.55.3
importlib-resources==6.4.5
kiwisolver==1.4.7
matplotlib==3.7.5
numpy==1.24.4
packaging==24.2
pillow==10.4.0
pyparsing==3.1.4
python-dateutil==2.9.0.post0
six==1.17.0
zipp==3.20.2

To install these dependencies, run the following command:

pip install -r requirements.txt

Compiling Your Application Using PyInstaller

Once you’ve set up the environment, you can compile the application into a standalone executable. Follow these steps:

  1. Create a virtual environment: python3 -m venv venv
  2. Activate the virtual environment: source venv/bin/activate
  3. Install required dependencies: pip install -r requirements.txt
  4. Compile the application using PyInstaller: pyinstaller --onefile mfp.py

Note: You’ll need to install PyInstaller if you don’t have it already:
pip install pyinstaller

Known Issues and Notes

  • matplotlib might take a little longer to load on the first run due to its initialization process.
    Please be patient.

Download:

mathematical_formula_plotter_tutorial.zip


Once the compilation is complete, you’ll have a fully functional Mathematical Formula Plotter application that you can run on any compatible system.


That’s all folks!

This tutorial offers a straightforward approach to creating a powerful visualization tool for electromagnetism.
By leveraging Python, matplotlib, and numpy, you can simulate complex fields and explore various scientific concepts interactively.

Thanks for following along, and we hope this guide helps you build a deeper understanding of mathematical visualizations!
K0NxT3D

DaRK Development And Research Kit 3.0 Scraper Crawler Preview Webmaster Utilities

Stand Alone Flask Application

Stand Alone Flask Application Template By K0NxT3D

The Stand Alone Flask Application Template is a minimal yet powerful starting point for creating Flask-based web UI applications. Developed by K0NxT3D, this template is designed to run a Flask app that can be deployed easily on a local machine. It features an embedded HTML template with Bootstrap CSS for responsive design, the Oswald font for style, and a simple yet effective shutdown mechanism. Here’s a detailed look at how it works and how you can use it.


Stand Alone Flask Application – Key Features

  1. Basic Flask Setup
    The template leverages Flask, a lightweight Python web framework, to build a minimal web application. The app is configured to run on port 26001, with versioning details and a friendly app name displayed in the user interface.
  2. Embedded HTML Template
    The HTML template is embedded directly within the Flask application code using render_template_string(). This ensures that the application is fully self-contained and does not require external HTML files.
  3. Bootstrap Integration
    The application uses Bootstrap 5 for responsive UI components, ensuring that the application adapts to different screen sizes. Key elements like buttons, form controls, and navigation are styled with Bootstrap’s predefined classes.
  4. Oswald Font
    The Oswald font is embedded via Google Fonts, giving the application a modern, clean look. This font is applied globally to the body and header elements.
  5. Shutdown Logic
    One of the standout features is the built-in shutdown mechanism, allowing the Flask server to be stopped safely. The /exit route is specifically designed to gracefully shut down the server, with a redirect and a JavaScript timeout to ensure the application closes cleanly.
  6. Automatic Browser Launch
    When the application is started, the script automatically opens the default web browser to the local Flask URL. This is done by the open_browser() function, which runs in a separate thread to avoid blocking the main Flask server.

How The Stand Alone Flask Application Works

1. Application Setup

The core setup includes the following elements:

TITLE = "Flask Template"
VERSION = '1.0.0'
APPNAME = f"{TITLE} {VERSION}"
PORT = 26001
app = Flask(TITLE)

This sets the title, version, and application name, which are used throughout the app’s user interface. The PORT is set to 26001 and can be adjusted as necessary.

2. Main Route (/)

The main route (/) renders the HTML page, displaying the app title, version, and a button to exit the application:

@app.route('/', methods=['GET', 'POST'])
def index():
return render_template_string(TEMPLATE, appname=APPNAME, title=TITLE, version=VERSION)

This route serves the home page with an HTML template that includes Bootstrap styling and the Oswald font.

3. Shutdown Route (/exit)

The /exit route allows the server to shut down gracefully. It checks that the request is coming from localhost (to avoid unauthorized shutdowns) and uses JavaScript to redirect to an exit page, which informs the user that the application has been terminated.

@app.route('/exit', methods=['GET'])
def exit_app():
if request.remote_addr != '127.0.0.1':
return "Forbidden", 403
Timer(1, os._exit, args=[0]).start() # Shutdown Server
return render_template_string(html_content, appname=APPNAME, title=TITLE, version=VERSION)

This section includes a timer that schedules the server’s termination after 1 second, allowing the browser to process the redirect.

4. HTML Template

The embedded HTML template includes:

  • Responsive Design: Using Bootstrap, the layout adapts to different devices.
  • App Title and Version: Dynamically displayed in the header.
  • Exit Button: Allows users to gracefully shut down the application.
<header>
<span class="AppTitle" id="title">{{title}} {{version}}</span>
</header>

This structure creates a clean, visually appealing user interface, with all styling contained within the app itself.

5. Automatic Browser Launch

The following function ensures that the web browser opens automatically when the Flask app is launched:

def open_browser():
webbrowser.open(f"http://127.0.0.1:{PORT}")

This function is executed in a separate thread to avoid blocking the Flask server from starting.


How to Use the Template

  1. Install Dependencies:
    Ensure that your requirements.txt includes the following:

    Flask==2.0.3

    Install the dependencies with pip install -r requirements.txt.

  2. Run the Application:
    Start the Flask application by running the script:

    python app.py

    This will launch the server, open the browser to the local URL (http://127.0.0.1:26001), and serve the application.

  3. Exit the Application:
    You can shut down the application by clicking the “Exit Application” button, which triggers the shutdown route (/exit).

Why Use This Template?

This template is ideal for developers looking for a simple and straightforward Flask application to use as a base for a web UI. It’s particularly useful for local or single-user applications where quick setup and ease of use are essential. The built-in shutdown functionality and automatic browser launch make it even more convenient for developers and testers.

Additionally, the use of Bootstrap ensures that the UI will look good across all devices without requiring complex CSS work, making it a great starting point for any project that needs a web interface.


The Stand Alone Flask Application Template by K0NxT3D is an efficient and versatile starting point for building simple Flask applications. Its integrated features, including automatic browser launching, shutdown capabilities, and embedded Bootstrap UI, make it a powerful tool for developers looking to create standalone web applications with minimal setup.

Seaverns Web Development Coding Security Applications and Software Development Bex Severus Galleries Digital Art & Photography

Doc.R Log Viewer 1.0

Discover the Power of Doc.R Log Viewer 1.0: Your Go-To Tool for Large Log Files

Download:

Title: Doc.R Log Viewer 1.0
Author: K0NxT3D
File: DocR.zip
Size: 2.7kb

Navigating through extensive log files can be a daunting task. Fortunately, Doc.R Log Viewer is here to revolutionize your log-reading experience. Tailored for handling large files, Doc.R offers a lightweight and efficient solution that enables users to find critical information without the hassle.

Streamlined Log Reading

Doc.R Log Viewer is designed specifically for reading large log files, allowing users to sift through mountains of data effortlessly. Unlike traditional text editors, it doesn’t modify your log files but enhances your ability to locate specific entries quickly. This focus on readability and speed makes Doc.R an essential tool for anyone dealing with logs generated by software applications or systems.

Versatile File Type Support

One of Doc.R’s standout features is its capability to read various file types. Whether you’re working with .log files or other formats, Doc.R adapts to your needs. This flexibility is invaluable for professionals who frequently switch between different software, including Microsoft Word, Excel, and LibreOffice, ensuring seamless integration into your workflow.

Built on Python for Performance

Utilizing Python’s powerful libraries, Doc.R achieves impressive performance without sacrificing user experience. The application uses the curses library to create a terminal interface that makes navigating through logs intuitive and responsive. Users can easily scroll, load more lines, and customize their viewing preferences, all while enjoying a clean and elegant layout.

Elevate Your Workflow

Doc.R Log Viewer is more than just a log-reading tool; it’s a game-changer for productivity.
With its fast performance, multi-format support, and user-friendly design, Doc.R empowers users to tackle large logs with confidence.
Experience the difference today—make Doc.R your trusted partner in log analysis.


Python is a versatile and powerful language that lets you work quickly and integrate systems more effectively. Learn how to get started, download the latest version, access documentation, find jobs, and join the Python community.

Learn Python!